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Abstract. New sum rules involving particular products of many 3 - j  symbols are 
established. These sum rules are useful in multiphoton calculations. 

A number of new interesting identities satisfied by n-j symbols have been discovered 
in the course of recent work on simple many-particle systems such as the hydrogen 
molecular ion (Dunlap and Judd 1975) and the helium atom (Morgan 1975, 1977). In 
this connection we would like to call attention to a somewhat different kind of sum 
rule for products of many 3-j symbols, which occur naturally in a perturbation 
treatment of higher-order radiative transitions in one-electron atoms. To the best of 
our knowledge, no equivalent results have been reported before, although the sums 
involved present some analogy with those entering the so called contraction formulae. 

The sums we were concerned with may be written as 

where 
N-1 

[L;  A ,  A’] = (2L+ 1) n (2Ai + 1)(2Ai + 1) and q =0,  *l. 
i = l  

For brevity in equation (i) we have used a single greek summation index to denote a 
whole set of the same name (e.g. A stands for A1,  A z ,  . . . ,  AN-^), so that each term is in 
fact a weighted product of 4 N  3-j symbols. In spite of its intricate appearance the 
summation above may be evaluated easily in closed form. The result looks surpris- 
ingly simple, and does not depend on I :  

s y  = 1/(2N+ 1); SLY) = N!/(2N+ l)!!. ( 2 )  

0305-4770/78/0007-1241$01.00 @ 1978 The Institute of Physics 1241 



1242 S Klarsfeld and A Maquet 

In order to get a better understanding of the genesis and the significance of 
equation (1) it is necessary to go back to the associated physical process: ionisation of 
an atom initially in the state In, 1) through absorption of N photons of energy ko and 
polarisation E from a laser beam (see, for instance, Maquet 1977 and references 
therein). Within the framework of conventional perturbation theory the total cross 
section of this process in the dipole approximation is given by 

where f is a unit vector along the propagation direction of the outgoing photo- 
electron, and 

( A X ; q ) = ( 4 7 ~ / 3 ) ” ~  ILM)(LM(Yi,q(hN-iCLN-i) . (AiCLiIYi,qIlm)T~~~,r;“(w) 
L.M.A,u 

(4 1 
represents the Nth-order transition amplitude. The ket IL) denotes an angular state in 
which the polar coordinates have definite values e,+, and in particular one has 
(film) = Yf,m(O, 4). The spherical harmonic Yl,q stems from the electric dipole 
operator e .  r with q = 0 for linear polarisation, and q = *1 for circular polarisation. 
On the other hand, the quantities TLyi,!;” ( U )  are essentially the radial amplitudes for 
the different transitions from the initial to the final state through intermediate states of 
angular momenta A i ,  A 2 ,  . . . ,  AN-^, and their evaluation is in general a very difficult 
task. However, in view of the increasing complexity of the angular momentum 
algebra, much care must be exercised also to ensure that all the components are 
correctly taken into account (Heno et a1 1976). In this respect the above results may 
provide a useful check for numerical calculations. 

A simple proof of our sum rules may be given on starting from the fictitious 
Nth-order amplitude 

lB!K!q)= (477/3>”’ ILM)(LM(Yi,q(hN-iCLN-i). . . (Aipi(Yi,qIlm), (5  1 
L,M.A,u 

which is obtained by discarding all the radial factors in equation (4). It is then easy to 
see that the sum S i N )  is just the pseudo-cross section corresponding to this fictitious 
amplitude, i.e. 

To this end it suffices to express the integrals as usual over a product of three spherical 
harmonics in terms of 3 - j  symbols (Edmonds 1960) and to insert equation ( 5 )  as it 
stands into equation (6). 

The crucial point now is to notice that the absence of the radial amplitudes allows 
us to rewrite equation ( 5 )  in the contracted form 

by using the closure theorem for spherical harmonics: 
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Substitution of equation (7) into equation (6) gives 

siN) = (21 + 1 ) - ' ( 4 ~ / 3 ) ~  f: I dnrt((L((Yl.,)Nllm)12, (9) 
m=-1 

and this may be transformed further by using a particular case of the addition theorem 
for spherical harmonics 

(4w/3)1'2 y1,*'(L)= *sin e e*'*/&, (12b) 

the integration over L eventually gives the results stated in equation (1). 
Whereas the derivation presented here is very simple indeed, one may question 

whether equation (2) could be obtained so easily by an entirely algebraic method, on 
using the machinery of angular momentum theory. In the particular case N = 1 
equation (1) reduces to 

and the result S t )  = 4 follows trivially at once from the usual orthogonality relations 
for 3-j symbols. For N>1 the problem seems to be much more involved. An 
algebraic proof for arbitrary N has been given by Sureau (private communication), 
who used the graphical method of Yutsis et a1 (1962), but required a large amount of 
work, in contrast to the analytical approach presented here. 

Similar sum rules may be established of course for any multipole operator. Other 
interesting summation formulae have been worked out by Heno (private com- 
munication), who considered various bound-bound multiphoton transitions, instead 
of bound-free transitions. 
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